thermo scientific

Reacti-Therm Sample Derivatization System

Heating, stirring and evaporation

Sample Preparation

Derivatisation

Evaporation

Injection

Thermo

Reacti-Therm

Combines heating, stirring, and evaporation for unmatched versatility.

Thermo Scientific offers the Thermo Scientific[™] Reacti-Therm[™] Heating/Stirring Module (uniform dry heat to the sample) coupled with the Thermo Scientific[™] Reacti-Vap[™] Evaporator (simultaneous or separate delivery of pressurized gas) to provide a complete solution for derivatization or other small scale reactions.

- Derivatization reactions for HPLC and GC
- Protein hydrolysis
- Small-scale reactions
- Sample incubation
- Vacuum hydrolysis for amino acid analysis
- Sample evaporation

Visit thermofisher.com/chromatography

for the latest news, applications and downloads for the product range.

Select your flexible system

Available options

Specifications

Closure type	Single block	Triple block	
Electrical Input			
Voltage	120V or 240V	120V or 240V	
AC Input Voltage Tolerance	+/- 10%	+/- 10%	
Wattage (Maximum)	130W	260W	
Frequency	50/60Hz	50/60Hz	
Performance			
Temperature Range*	ambient + 10°C to 200°C	ambient + 10°C to 200°C	
Temperature Uniformity*	± 0.5°C	± 0.5°C	
Temperature Stability*	± 0.5°C at 37°C	± 0.5°C at 37°C	
Stirrer Operating Range	150-700 ± 100RPM	150-700 ± 100RPM	
Maximum Inlet			
Gas pressure	2psi	2psi	

The flexible system for your laboratory Modular base systems

Modules

Product No.	Description	Pkg. Size
TS-18820	ThermoFisher [™] Reacti-Probe [™] Remote Temperature Probe	1 unit
TS-18821	Reacti-Therm Heating/Stirring Module (Single Block)	1 unit
TS-18822	Reacti-Therm Heating Module (Single Block)	1 unit
TS-18823	Reacti-Therm Heating/Stirring Module (Triple Block)	1 unit
TS-18824	Reacti-Therm III Heating Module (Triple Block)	1 unit
TS-18825	Reacti-Vap Evaporator	1 unit
TS-18826	Reacti-Vap Evaporator	1 unit

Underwriters Laboratories, Inc. Listed

Note: Our Reacti-Therm Modules bear a CE marking for meeting the requirements of the European Union's Low-Voltage and EMC Directives.

The flexible system for your laboratory Choice of heating blocks

Thermo Scientific[™] Reacti-Block[™] Aluminium Blocks are available with many hole configurations, machine-drilled to accommodate almost any size Thermo Scientific[™] Reacti-Vial[™] Small Reaction Vial (page 8), test tube or microcentrifuge tube. These highly efficient units are constructed of an aluminium alloy for optimal thermal conductivity. To ensure proper heat transference, be sure to have a close block-to-sample container fit.

Ordering information

Product No.	Description
TS-18801	Reacti-Block A-1 Holds 13 × 0.3ml or 1ml Reacti-Vials; 13 holes/14mm dia. × 23mm deep
TS-18802	Reacti-Block B-1 Holds 9 × 3ml or 5ml Reacti-Vials; 9 holes/21mm dia. × 32mm deep
TS-18803	Reacti-Block C-1 Holds 13 × 3.5ml Screw Cap Septum Vials; 13 holes/15mm dia. × 34mm deep
TS-18804	Reacti-Block Z-1 Holds 9 × 0.1mm Reacti-Vials; 9 holes/12mm dia. × 21mm deep
TS-18811	Reacti-Block M-1 Holds 6 × 27.5ml Reacti-Vials; 6 holes/28.5mm dia. × 70mm deep
TS-18814	Reacti-Block Q-1 Holds 10 Reacti-Vials; Small Reaction Vials 8 holes 25mm × 46mm deep
TS-18816	Reacti-Block S-1 Holds 13 × 13mm dia. Test Tubes; 13 holes/14mm dia. × 45mm deep
TS-18817	Reacti-Block T-1 Holds 9 × 16mm dia. Test Tubes; 9 holes/17mm dia. × 45mm deep
TS-18818	Reacti-Block U-1 Holds 8 × 20mm dia. Test Tubes; 8 holes/21mm dia. × 45mm deep
TS-18819	Reacti-Block V-1 Holds 17 Microcentrifuge Test Tubes; 17 holes/11mm dia. × 45mm deep
The Reacti-Block Aluminum Block Modules. The hole patterns do no	s featured below are designed to be used exclusively with the Reacti-Therm t match the needle configuration of Reacti-Vap Evaporators.
TS-18806	Reacti-Block F Holds 8 × 6ml Vacuum Hydrolysis Tubes; 8 holes/10mm dia. × 64mm deep
TS-18807	Reacti-Block G Holds 4 × 18ml Vacuum Hydrolysis Tubes; 4 holes/19mm dia. × 64mm deep
TS-18809	Reacti-Block J Blank/no holes (for custom drilling) 7.6cm tall
TS-18810	Reacti-Block K Blank/no holes (for custom drilling) 5.1cm tall
TS-18812	Reacti-Block L Holds 16 x 0.1ml Reacti-Vials: 16 holes/12mm dia. x 21mm deep

The flexible system for your laboratory Reacti-Vial magnetic stirrers

Faster reaction times with smooth, efficient mixing of small reaction samples

- PTFE-coated stirring bars fit the cone portion of the Reacti-Vial
- Solubilization of sticky concentrated residues such as those found on evaporation of sugar solutions
- Increased speed-of-surface reactions by keeping insoluble reactants in suspension
- More information about appropriate vials on page 8
- More information about derivatisation reagents on pages 10 and 11

Ordering information

Product No.	Description	Pkg. Size
TS-16000	Reacti-Vial Magnetic Stirrers For use with 3.0, 5.0. and 10ml Reacti-Vial Small Reaction Vials	Pkg. of 6
TS-16010	Reacti-Vial Magnetic Stirrers For use with 0.3 and 1.0ml Reacti-Vial Small Reaction Vials	Pkg. of 6

Flexible system for your requirements

Reacti-Therm Remote Temperature Probe and Thermometers

PTFE-coated, designed specifically for dry incubations.

Remote Temperature Probe (RTP) provides more accurate and responsive control of the heating function, is not a substitute for temperature calibration to an independent thermometer.

For best results, perform temperature calibration with the RTP placed in the aluminum block thermometer well and a standard thermometer placed in a reaction vial in one of the aluminum block wells.

Ordering information

Product No.	Description	Pkg. Size
TS-18914	Reacti-Therm Thermometer, Mercury-free (0-100°C)	Pkg. of 6
TS-18915	Reacti-Therm Thermometer, Mercury-free (0-200°C)	Pkg. of 6
TS-18820	Reacti-Probe Remote Temperature Probe	1 unit

The flexible system for your laboratory Reacti-Vap Evaporator

Thermo Scientific Reacti-Vap Evaporators are precision-machined gas manifolds. They provide simple, efficient evaporation by allowing the simultaneous or separate delivery of nonreactive pressurized gas to samples.

The evaporators attach simply to the Reacti-Thermo modules and the evaporating head tilts back for easy needle attachment and removal. PTFE-coated needles are available for applications using strong acids. Each Reacti-Vap Needle has a Luer-Lok[®] hub for leak-proof attachment to Reacti-Vap Evaporators Needles are available in 4- and 6-inch lengths.

Ordering information

Product No.	Description	Pkg. Size
TS-18825	Reacti-Vap Evaporator (9-port) For use with Reacti-Therm Single Block Modules; TS-18822 and TS-18821, Includes 9 needles and plugs	-
TS-18826	Reacti-Vap III Evaporator (27-port) For use with Reacti-Therm III Modules; TS-18823 and TS-18824, Includes 27 needles and plugs	-
TS-18782	Reacti-Vap Replacement Tube Kit 2.5 inch (64mm)	Pkg. of 9 and plugs
TS-18784	Reacti-Vap PTFE Coated Needles 4-inch (102mm) × 19 gauge	Pkg. of 9
TS-18786	Reacti-Vap PTFE Coated Needles 6-inch (152mm) × 19 gauge	Pkg. of 9
TS-18827	Replacement Luer-Lok Fitting	Pkg. of 1
TS-18828	Replacement Screws for Mounting Bracket	Pkg. of 4
TS-18829	Replacement Height Adjustment Knob	Pkg. of 1
TS-18830	Replacement Mounting Bracket	Pkg. of 1
TS-18831	Replacement Metal Rod	Pkg. of 1
TS-18832	Replacement Dial for Flow Control	Pkg. of 1
TS-18833	Replacement Long Screws for Mounting Bracket	Pkg. of 4

The flexible system for your laboratory Reacti-Vials

Thermo Scientific Reacti-Vial Small Reaction Vials have an internal cone designed to make small-sample collection and handling easy and convenient. The cone feature is particularly useful for removing small quantities of sample with a syringe, even into the microliter range. The extra thick glass wall magnifies the sample, making these units ideal for observing chemical reactions.

Ideal for:

- Derivative preparation
- Residue isolation
- Digestion or hydrolysis
- Sample storage

Reacti-Vial Small Reaction Vials

				Clear Pkg. of 12	Amber Pkg. of 12
Size	Dimensions (Diam. x Height) (mm ± 1mm)	Inside Diameter (mm)	Thread Style	Product #	Product #
100 µl	12 x 32	8	425-8	TS-13100	_
0.3 ml	13 x 32	11	425-13	TS-13220	_
1.0 ml	13 x 45	11	425-13	TS-13221	TS-13097
3.0 ml	20 x 47	18	425-20	TS-13222	—
5.0 ml	20 x 60	18	425-20	TS-13223	TS-13099
10.0 ml	25 x 69	22	425-24	TS-13225	_

All Reacti-Vial Small Reaction Vials are supplied complete with Open-Top Screw Caps and PTFE/Rubber Septa (other septa can be ordered separately, see optional accessories overleaf).

Accessories

PTFE/Rubber Septa

For a highly inert and nonreactive seal.

PTFE/Silicone Septa

Unique septa that combine the inertness of a PTFE coating with the resealability of silicone.

Mininert Valves

Ideal for chemicals that deteriorate or evaporate in conventionally sealed containers.

Vacuum Hydrolysis Tubes

For fast, effective protein and peptide hydrolysis

- The upper temperature limit of the Vacuum Hydrolysis Tubes is 260°C; however, do not heat the tubes greater than 100°C in an oven
- Vacuum Hydrolysis Tubes fit conveniently into Reacti-Block Aluminium Heating Blocks

	PTFE/ silicone septa pkg. of 72	Rubber laminated septa pkg. of 72	Open-Top screw caps pkg. of 72	Miniert valves pkg. of 72	Reacti-Vial Magnetic Stirrers pkg. of 6
Vial Size	Product #	Product #	Product #	Product #	Product #
100 µl	TS-12708	_	TS-13208	—	_
0.3 ml	TS-12712	TS-12412	TS-13215	_	TS-16010
1.0 ml	TS-12712	TS-12412	TS-13215	_	TS-16010
3.0 ml	TS-12718	TS-12418	TS-13218	TS-10135	TS-16000
5.0 ml	TS-12718	TS-12418	TS-13218	TS-10135	TS-16000
10.0 ml	TS-12722	TS-12422	TS-13219	TS-10130	TS-16000

Optional accessories

Septa compatibility guide optional accessories

Closure type	Resealability	Recommended for use with	Not recommended for use with
PTFE/Silicone Septa	Excellent	DMF, DMSO, organic solvents, pyridine, THF and silylation reactions	Strong corrosives, such as chlorosilanes
PTFE/Rubber Laminated Septa	Poor	Corrosives such as chlorosilanes, DMF, DMSO, organic solvents, pyridine and THF	Trifluoracetic anhydride

The flexible system for your laboratory GC Derivatization reagents

Why do we derivatize?

- To make a compound that otherwise could not be analysed by a particular method suitable for analysis
- To improve the analytical efficiency of the compound
- To improve the detectability of the compound

Often compounds cannot be analysed because they are not in a form that is suitable for the particular analytical technique. Examples include non-volatile compounds for GC analysis, insoluble compounds for HPLC analysis and materials that are not stable using the conditions of the technique. The derivatization procedure modifies the chemical structure of the compounds, allowing analysis by a desired technique.

Main types of derivatization

- Silylation
- Acylation
- Alkylation

Sily	lation	Acylation	Alkylation
$\begin{array}{cccc} {\sf CH}_3 & {\sf CH}_3 & {\sf HMDS} \\ {\sf I} & {\sf I} & {\sf HMDS} \\ {\sf CH}_3 - {\sf Si} - {\sf NH} - {\sf Si} - {\sf CH}_3 & {\sf MW} 161.4 \\ {\sf I} & {\sf bp} 125^{\circ}{\sf C} \\ {\sf I} & {\sf I} & {\sf bp} 125^{\circ}{\sf C} \\ {\sf CH}_3 & {\sf CH}_3 & {\sf n}_{\sigma}^{20} 1.4071 \end{array}$	$ \begin{array}{c} CH_3 & BSTFA \\ I & MW \ 257.4 \\ I & O & CH_3 & bp \ 40^\circ C/12 \ mm \\ I & I & d^{\circ} \ 0.961 \\ CF_3 - C = N - \mathop{\mathbf{Si}}_{1} - CH_3 \\ I & CH_3 \end{array} $	FFH Pentafluoropropanol H H MW 150.05 F-C-C-C-OH bp 80.6°C FFH d ²⁴ 1.2880	F H BF ₃ -Methanol I I BF ₃ -Methanol F B: O CH ₃ 14% BF ₃ MW 67.82 I 86% CH ₃ OH MW 32.04 F
$\begin{array}{cccc} {}^{\rm CH_3} & {\rm TMCS} \\ {}^{\rm I} & {\rm MW~108.7} \\ {}^{\rm CH_3} - {\scriptstyle {\rm Si-CI}} & {\rm bp~57.6^{\circ}C} \\ {}^{\rm I} & {\rm d}_{\rm 4}^{\rm 20}~0.858 \end{array}$	$\begin{array}{c} c_{H_{3}}\\ c_{H_{3}}-\frac{s_{i}}{s_{i}}-c_{H_{3}} & \text{BSTFA}\\ i & \text{MW} 257.4\\ i & \text{D} & \text{OU}_{5} & \text{D} & \text{PO}(712\text{mm})\\ i & \text{I} & \text{I} & \text{I} & \text{O}^{2}\\ i & \text{OU}_{5} & \text{OU}_{5}\\ c_{H_{3}}-\frac{c_{H}}{s_{i}}-\frac{c_{H}}{s_{i}} & \text{TMCS}\\ c_{H_{3}}-\frac{c_{H}}{s_{i}} & \text{CH} & \text{D} & \text{D} & \text{S7.6°C}\\ c_{H_{3}} & d_{1}^{2} & \text{O.858} \end{array}$	$\begin{array}{cccc} 0 & 0 & MBTFA \\ II & II \\ CF_3 - C - N - C - CF_3 & MW 223.08 \\ I & bp 123-124^{\circ}C \\ I \\ CH_3 & d^{\frac{2}{4}} 1.55 \end{array}$	$F = \begin{bmatrix} F & F \\ F & F \\ F & F \end{bmatrix} = \begin{bmatrix} F & MW20.9 \\ B_1 T/4.175 C \\ d_1^{22} 1.86 \end{bmatrix}$
$\label{eq:cf_s} \begin{array}{ c c c c c } \hline 0 & CH_3 & CH_3 & MSTFA \\ \hline 0 & I & I & I & MVV199.1 \\ CF_3 - C - N - Si - CH_3 & bp 70^\circ C/75 mm \\ I & CH_3 & d^2 1.11 \\ \hline CH_3 & CH_3 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c cccc} & & & & & & & & & & & \\ CH_3 & & I & & & & & & & \\ & N & C & - H & & & & & & & \\ N & C & - H & & & & & & & & & \\ CH_3 & & I & & & & & & & & & & & \\ CH_3 & & I & & & & & & & & & & & & \\ & & & &$
N CH ₃ TMSI I MW 140.26 N - si - CH ₃ bp 99°C/14 mm Hg I d ² / ₄ 0.957 CH ₃	$ \begin{array}{c} CH_3 \\ I \\ CH_3 - \mathbf{Si} - CH_3 \\ I \\ O \\ O \\ CH_3 \\ O \\ CH_3 \\ CH_3 - C = N - \frac{Si - CH_3}{I \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_3 $	$\begin{array}{ccc} 0 & 0 \\ \parallel & \parallel \\ \mathbf{R} - \mathbf{C} - 0 - \mathbf{C} - \mathbf{R} \end{array}$	CH ₃ [CH ₃ -N-CH ₃] ^①

The flexible system for your laboratory Detection and Hydrolysis Reagents

Pre- and post-chromatographic techniques are both used in HPLC derivatization. Pre-chromatographic (or pre-column techniques) offer more than greater selectivity and sensitivity in detection and can be used to enhance stability, improve resolution, improve peak symmetry and increase or decrease retention of solutes.

Most protein samples require some form of chemical treatment before their component amino acids are suitable for analysis. Protein and peptide samples must be hydrolyzed to free amino acids from peptide linkages. Acids (usually HCI) are the most widely used agents for hydrolyzing proteins.

Thermo Scientific Detection Reagents for HPLC

*EC = electrochemical; F = fluorescence; UV = ultraviolet; Vis = visible.

Handbook of Analytical Derivatization Reaction

A self-contained methodology reference manual and efficient entry point to the original literature resource book.

The *Handbook of Analytical Derivatization Reactions* by Daniel R. Knapp is a general collection of analytical derivatization methods for chromatography and mass spectroscopy involving the formation of covalent derivatives before analysis. Methods contained in this volume are organized according to the type of sample being derivatized.

Methods include structural formulas, experimental directions and useful comments. A thorough system of indexing takes you quickly to the "lab ready" methods of interest.

Ordering information

Product No.	Description	Pkg. Size
TS-24308	Hydrochloric Acid (Constant boiling, Hydrochloric Acid 6N Sequencing Grade)	10 × 1 ml ampules
TS-15012	Handbook of Analytical Derivatization Reactions Knapp, D.R. Ed (1979) Published by John Wiley and Sons, Inc. Hardcover, 74	41 pages

thermoscientific

Resources for chromatographers

New Thermo Scientific Chromatography Columns and Consumables Catalog 2016–2017

This extensive catalog offers proven chromatography tools and product selection guides. Available online, with a robust search tool and optimized for your Apple iPad.

Visit thermoscientific.com/catalog

Chromatography Resource Center

Our web-based resource center provides technical support, applications, technical tips and literature to help more your separations forward.

Visit thermoscientific.com/crc

Find out more at thermofisher.com/chromatography

For Research Use Only. Not for use in diagnostic procedures. © 2017 Thermo Fisher Scientific Inc. All rights reserved. iPad is a registered trademark of Apple Inc., registered in the U.S. and other countries. Mininert is a registered trademark of Valco Instruments Company. Luer-Lok is a registered trademark of Becton Dickinson and Company. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. **BR21694-EN 0817S**

